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Abstract

This paper introduces a new method for solving ordinary differential equations (ODEs) that
enhances existing methods that are primarily based on finding integrating factors and/or point
symmetries. The starting point of the new method is to find a non-invertible mapping that maps
a given ODE to a related higher-order ODE that has an easily obtained integrating factor. As
a consequence, the related higher-order ODE is integrated. Fixing the constant of integration,
one then uses existing methods to solve the integrated ODE. By construction, each solution
of the integrated ODE yields a solution of the given ODE. Moreover, it is shown when the
general solution of an integrated ODE yields either the general solution or a family of particular
solutions of the given ODE. As an example, new solutions are obtained for an important class
of nonlinear oscillator equations. All solutions presented in this paper cannot be obtained using
the current Maple ODE-solver.
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1. Introduction

In the late 19th century, Sophus Lie, inspired by Galois theory for algebraic equa-
tions, presented an ingenious approach for solving ordinary differential equations (ODEs)
(Olver, 1986; Bluman and Kumei, 1989; Bluman and Anco, 2002). Since Lie’s work, a
common belief is that reduction by Lie symmetries (point or contact) is the method for
solving ODEs. It is also the basis for the core algorithm of current ODE solvers such as
the Maple solver dsolve.

Consider the nonlinear oscillator

u′′ + u2u′ + 2u4 − 18u3 = 0. (1)

ODE (1) is a special case of a more general situation discussed in Case II in Section 5
of this paper. One can easily show that the translations x→ x + ε yield the only point
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symmetry of ODE (1). The corresponding invariant solutions are the obvious solutions
u(x) = 0 and u(x) = 9. On the other hand, if one uses the translation point symmetry
to reduce the order of ODE (1), then one obtains the complicated Abel equation

(

w′(t) + t2
)

w(t) + 2t4 − 18t3 = 0, (2)

where t = u and w = u′. ODE (2) has no obvious reduction.
Now, substitute u(x) = v′(x) in (1) to obtain the third order ODE

v′′′ + v′
2
v′′ + 2v′

4 − 18v′
3

= 0. (3)

By standard methods, one can easily find the integrating factor µ[V ] = e6V where V is
an arbitrary function of x. This yields the first integral of (3) given by

G[v] =

(

v′′ +
v′

3

3
− 3v′

2

)

e6v = c. (4)

Then through the mapping u = v′, any solution of G[v] = c, where c is an arbitrary
constant, is necessarily a solution of (1) but the converse is not true. Now restrict the
mapping to G[v] = c. Then the mapping

u = v′, u′ = v′′ = −1

3
v′

3
+ 3v′

2 − ce−6v (5)

is invertible if and only if the right hand side of the second equation of (5) depends
explicitly on v, i.e., c 6= 0. In this case, the differential equation G[v] = c is more
complicated than our given equation (1). However, when c = 0, precisely when the
mapping becomes non-invertible, the equation G = 0 is easily solved and its general
solution yields the one-parameter family of solutions

u(x) =
9

1 +W(c1e−27x)
(6)

for the nonlinear oscillator (1). [In (6),W(x) is the Lambert W function defined to be the
inverse of the function w → wew and c1 is an arbitrary constant.] The way we obtained
the solution (6) to the ODE (1) is naively the method we are presenting in this paper
which extends the method introduced in Bluman and Reid (1988).

The question which arises naturally after this example is: Why is the one-parameter
family of solutions (6) of ODE (1) not captured using Lie’s approach? The answer is
simple: Lie’s approach is based on symmetries which act on the whole solution set of a
given ODE. In particular, in Lie’s approach one assumes that

X(F [u]) = 0 mod F [u] = 0, (7)

where X is the infinitesimal generator of a point (or, more generally, contact) symmetry
and F [u], in our example, is the left hand side of (1). For ODE (1), we were unable to
find any such symmetries other than the translations x→ x + ε. On the other hand,
the above non-invertible mapping (5) with c = 0 induces for ODE (1) the ”symmetry”
X = (9x− v) ∂x+u (u− 9)∂u, where v is such that u−v′ = 0 1 , by push forwarding one

1 If
S →֒ J2(C, C2)

ցւ
J0(C, C2)

denotes the affine subbundle of the 2-jets space J2(C, C2) defined by the ODE
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of the eight point symmetries of G[v] = 0. When applied to F [u], instead of X(F [u]) = 0
mod F [u] = 0, one has

X(F [u]) = 0 mod I[u] = 0, (8)

where

I[u] := u′ +
1

3
u3 − 3u2. (9)

The one-parameter family of solutions (6) is the general solution of I[u] = 0 as can be
seen from (5) when c = 0. The vector field X leaves only the subset of solutions I[u] = 0
invariant not the whole set F [u] = 0. This aspect will be discussed in depth in a second
paper (Bluman and Dridi, 2011).

2. Preliminaries

Consider a given nth order algebraic differential equation

F (x, u, u′, · · · , u(n)) = 0. (10)

i.e., the corresponding ODE function F [U ] := F (x, U, U ′, · · · , U (n)) is a polynomial in the
variables U,U ′, · · · , and U (n) where U is an arbitrary function of x. The coefficients field is
the field of rational functions C(x). The notation for this is F [U ] ∈ C(x)[U,U ′, · · · , U (n)].
There is a clear distinction between the ODE F [u] = 0 and the ODE function F [U ]. We
assume F [U ] is linear in the highest derivative U (n).

Consider the mapping

U = f [V ] = f(x, V, V ′) ∈ C(x)(V, V ′) (11)

rational in V and V ′. We assume f [V ] has an essential dependence on V ′. Let

µ[V ] = µ(x, V, V ′, · · · , V (ℓ)), ℓ ≤ n, (12)

be a multiplier function. Let

H [V ] = H
(

x, V, V ′, · · · , V (n+1)
)

∈ C(x)
(

V, V ′, · · · , V (n+1)
)

(13)

be the rational function obtained after substituting the mapping (11) into the ODE
function F [U ]. In particular,

H [V ] = H
(

x, V, V ′, · · · , V (n+1)
)

= F

(

x, f [V ],
df [V ]

dx
, · · · , d

(n)f [V ]

dxn

)

, (14)

where d
dx

:= ∂x + V ′∂V + · · ·V (n+2)∂V (n+1) . Now suppose the multiplier (12) is an inte-
grating factor for (14), i.e.,

µ[V ]H [V ] =
d

dx
G[V ], (15)

for some function
G[V ] = G

(

x, V, V ′, · · · , V (n)
)

. (16)

The function µ[V ] in (12) is an integrating factor for (14) if and only if

EV (µ[V ]H [V ]) ≡ 0 (17)

system F [u] = 0 and u−v′ = 0, then the vector field X lives in ΓTJ0(C, C2). It can be lifted uniquely to
J2(C, C2) by preserving its contact structure (and that of J1(C, C2)). The resulting vector field, called
the second prolongation of X, is also denoted by X. In particular, in (8) X ∈ ΓTJ2(C, C2)).
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in terms of the Euler operator

EV =
∂

∂V
− d

dx

∂

∂V ′
+ · · ·+ (−1)(n+1) d

n+1

dxn+1

∂

∂V (n+1)
. (18)

The left hand side of (17) is linear in µ[V ] and its partial derivatives with coefficients
in the field C(x, V, V ′, · · · , V (n+2))(f, fx, fV , fV ′ , · · · ). Now suppose v(x) = Θ(x) is a
solution of the integrated ODE

G[v] = G
(

x, v, v′, · · · , v(n)
)

= c, (19)

for some fixed constant c. Then through the mapping (11), it follows that

u = f [v] = f (x,Θ(x),Θ′(x)) (20)

is a solution of the given ODE (10). Moreover, if v(x) = Φ(x; c1, · · · , cn) is a general
solution of the integrated ODE (19), then

u = f (x,Φ(x; c1, · · · , cn),Φx(x; c1, · · · , cn)) (21)

solves the given ODE (10). If c1, · · · , cn are n essential constants in the solution (21),
then (21) yields a general solution of the given ODE (10).

Proposition 1. A general solution of the integrated ODE (19), for a fixed value of the
constant c, yields a general solution of the given ODE (10) if and only if u = f(x, v, v′)
and u′ = d

dx
f(x, v, v′) are functionally independent over C(x) modulo the corresponding

integrated ODE (19), i.e., if and only if the determinant

det







∂vf [v] ∂v′f [v]

∂v
d
dx
f [v] ∂v′

d
dx
f [v]






6= 0 mod G[v] = c. (22)

Proof. The transverse mapping f is by construction a contact preserving mapping i.e.,
it sends the contact distribution of equation (10) to the contact distribution of equa-
tion (13). The restriction to equation (19) i.e., composing the mapping f with a contact
preserving surjective map, is again a contact preserving map. The condition (22) makes
the restricted f a diffeomorphism of Jn(C,C) and hence a contact transformation of
Jn(C,C). 2

To illustrate the above proposition consider again the example of the introduction
where equations (10) and (19) correspond to the second order ODEs (n = 2) given by
(1) and (4). The restriction of the mapping u = v′ to equation (4) is given by

u = v′, u′ = v′′ = −1

3
v′

3
+ 3v′

2 − ce−6v (23)

Here the determinant in (22) is equal to −6ce−6v. The mapping (23) is a contact trans-
formation relating equations (10) and (19) if and only if c is not zero.

3. Outline of the method

The method introduced in Section 2 involves three procedures. The first procedure
lie solution computes a particular solution of PDE systems using Lie symmetries. The
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second procedure solution pair looks for a pair (f [V ], µ[V ]) satisfying the non linear PDE

system (17) with the inequations fV ′ 6= 0, µ 6= 0. The third and main procedure is the
solver.

3.1. The first procedure lie solution

Given a system of differential equations and inequations, the procedure lie solution

computes a particular (i.e., invariant) solution (one or more) of the given system using

Lie’s symmetries. This procedure is very similar to the Maple command symgen. The

inequations are handled by localization (for instance, fV ′ 6= 0 is replaced by fV ′w = 1).

3.2. The second procedure solution pair

Let k := C(x, V, V ′, · · · , V (n−1)) be the differential field of rational functions endowed

with the derivations {∂x, ∂V , ∂V ′ , · · · , ∂V (n−1)}. To solve the nonlinear system (17) with
the inequations fV ′ 6= 0, µ 6= 0, we use a table of ansatzes. Each entree of the table

corresponds to a differential system Σ ⊂ k. For instance (in the case of second order
ODEs) the first entree is given by the list [fx, fV , µx, µV ′ , µV ′′ ] corresponding to the

assumptions f [V ] is a function of v′ and µ[V ] a function of V only.

To find a solution pair, we proceed as follows

Procedure solution pair

Input An ODE function F [U ]

Output A solution pair (f [V ], µ[V ]) satisfying (17) with fV ′ 6= 0, µ 6= 0

(1) for each Σ in the table of ansatzes do

(i) compute a characteristic set C of the system (17) union Σ with fV ′ 6= 0, µ 6= 0

(ii) return (f [V ], µ[V ]) := lie solution(C) if not empty

3.3. The solver ode solver

Procedure ode solver

Input An ODE F [u] = 0

Output Solution of F [u] = 0

(1) (f [V ], µ[V ]) := solution pair (F [U ])

(2) compute a characteristic set C of the linear system (15) with G[V ]V (n−1) 6= 0

(3) G[V ] := lie solution(C)

(4) solve the ODE system {G[v]− c(x) = 0, c′(x) = 0}.
(5) return u = f [Θ(x)] for each solution (v = Θ(x), c = c0)
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Remark 1. In step (4), the solving process of the ODE system {G[v]− c(x) = 0, c′(x) = 0}
starts by computing first integrals using lie solve. If n functionally independent first in-
tegrals for the same value of c = c0 are found, then the general solution of the integrated
ODE G[v] − c0 = 0 is obtained. If no such first integrals are found then the solving
process returns a list of invariant solutions.

The above method is now illustrated through two examples (A more complicated
example is the nonlinear oscillator treated in Section 5).
Example. Consider again ODE (1), i.e,

u′′ + u2u′ + 2u4 − 18u3 = 0.

The corresponding ODE function is given by F [U ] = U ′′ +U2U ′ + 2U4− 18U3. Restrict
the mapping (11) to be of the form U = f [V ] = ψ(V )V ′. For the multiplier (15), consider
the ansatz µ[V ] = µ(V ). For the corresponding determining equation (17), one obtains
the solution pair

(f [V ], µ[V ]) =
(

ψ(V )V ′, c1e
∫

6ψ(V )dV
)

,

where ψ(V ) is an arbitrary function. Setting ψ(V ) = c1 = 1, one obtains the third order
ODE

H [v] := v′′′ + v′
2
v′′ + 2v′

4 − 18v′
3

= 0

that in turn yields the integrated ODE (4). The rest of the calculation is already given
in the introduction.

Now consider the geometry of the problem. Recall that S →֒ J2(C,C2) refers to the
subbundle of J2(C,C2) defined by the system {F [u] = 0, u− f [v] = 0}. It sits above the
double fibration given by

S
π1 ւց π2

J2(C,C) ←֓ F H →֒ J3(C,C)

where the subbundles F and H are defined by F [u] = 0 and H [u] = 0, respectively.
The pull-back of µ[V ]H [V ] = d

dx
G[V ] with respect to the right projection π2 (which

changes U to V ′, U ′ to V ′′ and leaves V invariant) yields e6V F [U ] = d
dx

(e6V I[U ]) where

I[U ] = U ′ + 1
3U

3 − 3U2 [Now d
dx

is the total derivative operator induced by the system
S]. In other words, the function e6V I[U ] is a first integral for the ODE system S. The
only way to get rid of V is to make it equal to zero. �

The double-fibration in the previous example is usually called a Bäcklund transforma-
tion. In general, the data given by equations (10), (11) and (13) always define a Bäcklund
transformation where π2 changes U to f(x, V, V ′), U ′ to d

dx
f(x, V, V ′) etc., and leaves V

invariant.
Example. As another example, consider the class of differential equations arising from
reduction of the nonlinear diffusion equation under scaling invariance of the form

2 (K(u)u′)
′

+ xu′ = 0. (24)

One can show that ODE (24) has a point symmetry if and only if

K(u) = a(u+ b)c, (25)
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where {a, b, c} are arbitrary constants, or the limiting case

K(u) = aebu. (26)

In particular, Lie’s symmetry reduction method can only reduce the order of (24) when

K(u) is of the form (25) or (26). In (Bluman and Reid, 1988), ”new symmetries” were

found for the class of ODEs (24) when

K(u) =
1

au2 + bu+ c
exp

(

λ

∫

1

au2 + bu+ c
du

)

(27)

where {a, b, c, λ} are arbitrary constants. For arbitrary K(u), one can easily check that

the Bäcklund transformation u = v′ transforms the ODE (24) to the conserved form

ODE
d

dx
(2K(v′)v′′ + xv′ − v) = 0. (28)

One can show that a corresponding related second order ODE

2K(v′)v′′ + xv′ − v = 0 (29)

has a point symmetry if and only if K(u) is of the form (27). As an example, when

K(u) = 1
u2+1 , the ODE (29) has the point symmetry with infinitesimal generator X =

(x+ vv′) ∂
∂v

. In (Bluman and Reid, 1988), it was shown how this led to the general

solution of ODE (29) and, in turn, to the general solution of the ODE (24). Indeed, the

mapping u = v′ when restricted to (29) yields the contact transofmation u = v′, u′ =

v′′ =
v − xv′
2K(v′)

. �

Example. If F [u] = 0 is the Riccati equation u′+a2(x)u
2 +a1(x)u+a0(x) = 0 then the

computation yields the well known Bäcklund transformation f [V ] = ψ′(V )
ψ(V )a2(x)V

′ where

ψ(V ) is an arbitrary function of V . �

4. Classical and nonclassical functions in the sense of Umemura

An ordinary differential field K is a field endowed with a derivation. If K is a subfield

of a differential field L and it is stable under the derivation of L, then K, endowed with

the same derivation, is a differential field and is said to be a differential subfield of L. If

Σ is a set of elements of L, the extension of K generated by Σ, denoted by K < Σ >,

is the smallest differential subfield of L containing Σ and K. The following definition is

due to (Umemura, 1998).

Definition 1. An ordinary differential field extension K of the field of rational func-

tions C(x) is said to be classical if there exist y1, · · · , yN such that

(i) the field K is a differential subfield of the field C(x) < y1, · · · , yN >;

(ii) for each i, one of the following conditions is satisfied:

(a) yi is a solution of a homogeneous linear ODE with coefficients in C(x) <

y1, · · · , yi−1 > [Picad-Vessiot extension].
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(b) yi is the composite function ψ(a1, · · · , an) for a certain Abelian function ψ 2

and certain a1, · · · , an ∈ C(x) < y1, · · · , yi−1 > [Abelian extension].
An element of a classical extension is called a classical function.

The primitive of a classical function is also classical (since y′(x) = a(x) implies the
second order homogeneous linear ODE (y′/a)

′

= 0 for y). It is also true, although not clear
from the definition, that any solution of fn+a1f

n−1 + · · ·+a0 = 0 is a classical function
provided the ai are classical. Such solutions are said to be algebraic (over the appropriate
field). However, transcendental classical functions are solutions of homogeneous linear
ODEs with classical coefficients (or Abelian functions which arise rarely in practice).
The Airy function solution of v′′ − xv = 0 is a transcendental classical function. Other
examples include Bessel functions, hypergeometric functions, the error function, etc.

The solution u(x) =
9

1 +W(c1e−27x)
of ODE (1) is a transcendental classical function.

The integrated equation with c = 0 simplifies to
(

v′′ + v′
3

3 − 3v′
2
)

= 0 which can be

mapped to the homogeneous linear ODE w′′(t) + 3w′(t) = 0 under the invertible bi-
rational transformation w(t) = x− v/2, t = v(x). Consequently, v(x) is a transcendental
classical function and so is u(x), the primitive of v(x). The general solution of (1) is not
necessarily a classical function, i.e., there is no invertible transformation u = f(x, v, v′) ∈
K(v, v′) mapping the ODE (1) to (a second order) homogeneous linear ODE [Here K is
a classical extension of C(x)].

An example of a nonclassical function is the general solution of the first Painlevé
equation v′′ − 6v2 − x = 0. If this Painlevé equation happens to be an integrated ODE
for some second order ODE then this latter equation has no solutions which are classical
functions (Otherwise v(x) satisfies the first order ODE u(x)−f(x, v(x), v′(x)) = 0 which
contradicts the irreducibility of the Painlevé equation).

As an example, it is now shown how the method presented here yields all clas-
sical solutions of the second Painlevé equation u′′ − 2u3 − xu − α = 0. We obtain

(µ[V ], fα[V ], α) =
(

ψ(V ), αψ
′(V )
ψ(V ) V

′, ± 1
2

)

. Set ψ(V ) = 1/V 2. The mapping f
−

1
2
[v]

reduces to u = − 1
2
v′

v
, u′ = u2 + 1

2x − cv2 and the integrated ODE is the Airy equa-
tion when c = 0. This yields the well known Airy-like solution of the second Painlevé
equation. Furthermore, since f

−
1
2
[v] and f+ 1

2
[v] map to the same Airy equation the sym-

metry s1 : (u, α)→ (−u,−α) is constructed. Its invariant solution is simply u(x) = 0.
On the other hand, leaving u′ − u2 − 1

2x = 0 invariant, one obtains a second symme-

try s2 : (u, α)→ (u +
α+ 1

2

u′+u2+ 1
2x
,−1 − α). It has been proven by the Japanese school

(Umemura, 1998) that the reflections s1 and s2 (which generate a Weyl affine group of

type A
(1)
1 where u′ − u2 + 1

2x = 0 corresponds to a wall of a Weyl chamber of this affine
group) generate together with the two above seed solutions (u(x) = 0 and the Airy-like
solution) all classical solutions of the second Painlevé equation. Surprisingly, when c 6= 0,
the integrated ODE is again Painlevé II with the non zero constant c as a parameter.
The contact transformation u = − 1

2
v′

v
, u′ = u2 + 1

2x− cv2 is the folding transformation
(Tsuda et al., 2005) mapping algebraic solutions to Airy-like solutions of Painlevé II.

2 Recall that an Abelian function is a meromorphic function on the complex torus (Abelian variety)
Cp/Γ where Γ ⊂ Cp is a lattice. Abelian functions generalize the concept of elliptic functions (i.e. double-
periodic meromorphic functions on the complex plane such as the Weierstrass function) for p > 1. The
condition (b) simply means we may have to solve Weierstrass-like equations.
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5. Nonlinear oscillator equations

In this section we consider the nonlinear oscillator equation

u′′ +A(u)u′ +B(u) = 0, (30)

where A(u), B(u) ∈ Q(u); Q(u) is the field of rational functions in u with rational co-
efficients [We are interested only in real ODEs. Moreover, it is sufficient to consider
rational coefficients since real numbers are finitely represented in computer computation
as mantissa×baseexponent, i.e., as rational numbers.]

Before starting our investigation, we make the remark that in the generic case, the
above ODE, just like the example in the introduction, has a one-dimensional point sym-
metry group: the translations x→ x+ ε. In terms of the corresponding invariants t = u
and w = u′ the equation (30) reduces to

(w′(t) +A(t))w(t) +B(t) = 0, (31)

which is an Abel equation of the second kind (Polyanin and Zaitsev, 1995).

5.1. The general case

Since the nonlinear oscillator equation (30) has arbitrary functions A(u) and B(u), we
restrict the mapping (11) to be of the form U = V ′. Moreover, we restrict the integrating
factor (12) to be a function of V . In this case, the determining equation (17) splits into
the two ODEs







V 3
1 µ

′′′(V )− V 2
1 A(V1)µ

′′(V )− (B(V1)− V1B
′(V1))µ

′(V ) = 0,

3V1µ
′′(v)− (2A(V1) + V1A

′(V1))µ
′(V ) +B′′(V1)µ(V ) = 0.

(32)

The system (32) has the family of solutions µ(V ) = c0e
c1V provided the functions A(V1)

and B(V1) are related by the restriction

A(V1) =
c21V

3
1 + V1B

′(V1)−B(V1)

c1V 2
1

or, equivalently, B(V1) = V1

(∫

(c1A(V1)− c1V1)dV1 + c2

)

,

(33)
where c0, c1 and c2 are arbitrary constants [c0c1 6= 0]. It is easy to see that A(V1) is
a polynomial function i.e., A(V1) ∈ Q[V1] if and only if B(V1) ∈ Q[V1] and B(0) = 0.
Also deg(B(V1)) = deg(A(V1)) + 2. We set c0 to 1. In term of B(v1), the corresponding
integrated equation is

G[v] = ec1v
(

v′′ +
B(v1)

c1v1

)

.

The mapping u = v′ restricted to G[v] = c is given by

u = v′, u′ = v′′ = −B(u)

c1u
+ ce−c1v. (34)

The mapping (34) is invertible if and only if c is not zero. In the generic case, the ODE
G[v] = c has only a one-dimensional point symmetry group (the translations x→ x+ ε)
and this is not enough to integrate it. However, when c = 0, provided A(u) and B(u)
are subject to the restriction (33), we have for the nonlinear oscillator equation (30)
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the one-parameter family of solutions x+

∫ (

c1u

B(u)

)

du + c3 = 0 corresponding to the

general solution of the separable equation u′ +
B(u)

c1u
= 0.

Now consider specific examples.

5.2. Nonlinear oscillator with A(u) = a4u
4 + a3u

3 + a2u
2 + a1u+ a0

One obtains six cases where B(u) is a polynomial in u and B(0) = 0.

5.2.1. Case I: A(u) = u4 + 4b5u
3 + 3b4u

2 + (1 + 2b3)u+ b2, B(u) = (1/5)u6 +
∑5

1 biu
i

and µ(V ) = eV

Here, the ODE (30) takes the form

u′′ +
(

u4 + 4b5u
3 + 3b4u

2 + (1 + 2b3)u+ b2
)

u′ + (1/5)u6 +

5
∑

1

biu
i = 0. (35)

The point symmetry group of ODE (35) is one-dimensional. The integrated equation is

G[v] := ev
(

v′′ +

(

B(v′)

v′

))

= c, (36)

which induces the mapping

u = v1, u′ = −
(

B(u)

u

)

+ ce−v,

which is invertible if and only if c 6= 0.

Proposition 2. When c 6= 0, the point symmetry group of the integrated differential
equation (36) is given by the translations x→ x+ε induced by the original equation (35).
Moreover, there is no further restrictions on the parameters which enlarges the admitted
point symmetry group.

Proof. The unique characteristic set of the Lie defining equations with respect to the
evident ranking on the differential variables ξ, η, ai and bi is {ξx = 0, ξv, η = 0}. Here
ξ = ξ(x, v) and η = η(x, v) represent the infinitesimals. 2

Furthermore, one can only obtain for the second order ODE (35) a one-parameter
family of solutions and not its general solution. So setting c to zero, the corresponding
one-parameter family of solutions is the general solution of the separable first order
differential equation

u′ +

(

B(u)

u

)

= 0. (37)

Suppose
B(u)

u
=

5
∏

i=1

(u− ri) where r1 < r2 < · · · < r5 are real roots. Then the general

solution of the first order ODE (37) is given by

x+ c1 +

5
∑

i=1

ln(u(x) − ri)
[

d
du

(

B(u)
u

)]

u=ri

= 0,
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where c1 is an arbitrary constant.

If
B(u)

u
= (u − r)5, where r is real, then one has the algebraic general solution given

by

x+ c1 −
1

4(u(x)− r)5 = 0,

where c1 is an arbitrary constant.

5.2.2. Case II: A(u) = u3 + 3b4u
2 + (1 + 2b3)u + b2, B(u) = (1/4)u5 +

∑4
1 biu

i and
µ(V ) = eV

Here the ODE (30) takes the form

u′′ +
(

u3 + 3b4u
2 + (1 + 2b3)u + b2

)

u′ + (1/4)u5 +
4
∑

1

biu
i = 0. (38)

The point symmetry group of ODE (35) is one-dimensional. The integrated ODE is

G[v] := ev
(

v′′ +

(

B(v′)

v′

))

= c.

This induces the mapping u = v′, u′ = −
(

B(u)
u

)

+ ce−v. The determinant of the cor-

responding Jacobian is ce−v which vanishes if and only if c = 0. There is a similar
proposition as in the previous case. When c = 0, ODE (38) has a one-parameter family
of solutions given by the general solution of the separable first order ODE

u′ +

(

B(u)

u

)

= 0. (39)

Suppose
B(u)

u
=

4
∏

i=1

(u − ri) where r1 < r2 < r3 < r4 are real roots. Then the general

solution of the first order ODE (39) is given by

x+ c1 +

4
∑

i=1

ln(u(x) − ri)
[

d
du

(

B(u)
u

)]

u=ri

= 0,

where c1 is an arbitrary constant.

5.2.3. Case III: A(u) = u2 + (1 +2b3)u+ b2, B(u) = (1/3)u4 +
∑3

1 biu
i and µ(V ) = eV

The corresponding ODE is

u′′ +
(

u2 + (1 + 2b3)u+ b2
)

u′ + (1/3)u4 +

3
∑

1

biu
i = 0. (40)

Again the admitted point symmetry group is one-dimensional and no further restrictions
on the parameters will enlarge it. One obtains a one-parameter family of solutions given
by the general solution of the separable first order ODE

u′ +

(

B(u)

u

)

= 0. (41)

11



Suppose
B(u)

u
= (u − r1)(u − r2)(u − r3) where r1 < r2 < r3 are real roots. Then the

general solution of the first order ODE (41) is given by

x+ c1 +

3
∑

i=1

ln(u(x) − ri)
[

d
du

(

B(u)
u

)]

u=ri

= 0,

where c1 is an arbitrary constant.

5.2.4. Case IV: A(u) =
2a2

0+b22
a0b2

u+ a0, B(u) = u3 + b2u+ b1u and µ(V ) = e3
b2
a0
V

The corresponding ODE (30) is

u′′ +

(

2a2
0 + b22
a0b2

u+ a0

)

u′ + u3 + b2u+ b1u = 0, (42)

which again has a one-dimensional point symmetry group. The resulting integrated ODE

is

G[v] := e
b2
a0
v

(

v2 +
a0

b2

(

B(v′)

v′

))

= c.

This induces the mapping

u = v′, u′ = −a0

b2

(

B(u)

u

)

+ ce−
b2
a0
v.

The determinant of the corresponding Jacobian is

b2
a0
ce−

b2
a0
v

which vanishes if and only if c = 0 (since a0b2 can not vanish in this case). Setting c = 0,

the ODE (42) has a one-parameter family of solutions given by the general solution of

the separable first order ODE

u′ +
a0

b2

(

u2 + b2u+ b1
)

= 0,

which can be represented as

u(x) = −1

2

(

b2 − tanh

(

1

2

a0

√
∆

b2
(x+ c1)

)

√
∆

)

when ∆ > 0,

u(x) = −1

2

(

b2 + tan

(

1

2

a0

√
−∆

b2
(x+ c1)

)√
−∆

)

when ∆ < 0,

u(x) = −1

2

(

b2 −
2

a0(x+ c1)

)

when ∆ = 0,

where ∆ = b22 − 4b1 is the discriminant of B(u)
u

= u2 + b2u+ b1.

Remark 2. In Case IV, one can set c 6= 0 [Here the mapping is invertible and hence

one can obtain the general solution]. One finds four cases where with further restrictions

on the parameters the integrated ODE is solvable. However, in all these restricted cases

Maple was able to find the general solution directly from the original ODE.
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5.2.5. Case V: A(u) = a1u and B(u) = b3u
3 + b1u

Here the ODE (30) becomes

u′′ + a1uu
′ + b3u

3 + b1u = 0.

This case is solvable by Lie’s method (by Maple). Indeed, here the reduced Abel equation

(w′(t) + a1t)w(t) + b3t
3 + b1t = 0

has the symmetry
(2b3w2+(t2a1b3+a1b1)w+b23t

4+2b1b3t
2+b21)

w
∂w.

5.2.6. Case VI: A(u) = a1u and B(u) = b1u+ b0
The ODE (30) becomes

u′′ + a1uu
′ + (b1u+ b0) = 0. (43)

For this case, excluding the trivial subcases, we were unable to find any solution. One
can prove that the solutions of ODE (43) are nonclassical functions.

5.3. Nonlinear oscillator with B(u) = b4u
4 + b3u

3 + b2u
2 + b1u+ b0 = 0

One can also consider the nonlinear oscillator equations (where B(0) = b0 6= 0)

u′′ +A(u)u′ + b4u
4 + b3u

3 + b2u
2 + b1u+ b0 = 0.

According to the constraint (33), A(u) is a rational (not a polynomial) function of u. We
just consider two cases here.

5.3.1. Case 1: A(u) = 1
u2 +a0+a1u+a2u

2, B(u) = u4+ 1
2

(3a1a2−9)
a2
2

u3+ 3a0

a2
u2+b1u− 3

a2

and µ(V ) = c0e
3

a2
V

Suppose B(u) =
∏4
i=1(u−ri) where r1 < r2 < r3 < r4 are real roots, then one obtains

the one-parameter family of solutions

x+ c1 + 6a2

4
∑

i=1

ri (ln(u(x)− ri))
[B′(u)]u=ri

= 0,

where c1 is an arbitrary constant.

5.3.2. Case 2: A(u) = 1
u2 + u, B(u) = b1u− 1 and µ(V ) = c0 + c′0e

V

Here the ODE (30) takes the form

u′′ +

(

1

u2
+ u

)

u′ + b1u− 1 = 0. (44)

The corresponding separable first order ODE is

u′ − 1

u
+ b1 = 0.

This yields the one-parameter family of solutions of ODE (44) given by

u(x) =
1

b1

(

W
(

e−(b21x+c1)
)

+ 1
)

,

where c1 is an arbitrary constant and W(x) is the Lambert W function.
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5.4. Solutions for Abel equations

The first order ODE u′(x) +
B(u)

c1u
= 0 yields an explicit solution for the Abel equation

(w′(t) +A(t))w(t) +B(t) = 0,

where A(t) =
c21t

3 + tB′(t)−B(t)

c1t2
since t = u(x) and w(t) = u′(x). For instance, for the

ODE (44) the corresponding first order ODE is

u′ − 1

u
+ b1 = 0. (45)

Writing (45) in terms of t = u(x) and w(t) = u′(x) yields w(t) = 1
t
− b1, a solution of

the Abel equation
(

w′(t) +
1

t2
+ t

)

w(t) + b1t− 1 = 0.

Similarly, w(t) = − 1
3 t

3 + 3t2 is solution of the Abel equation (2) in the Introduction.

5.5. The integrating factor as a function of x

Of course one can restrict the integrating factor (12) to be a function of x instead of

being a function of V [The mapping (11) is again U = V ′]. For example, if

A(u) = B′(u) + c0, B(u) = (1/5)u5 +

4
∑

0

biu
i and µ = c0e

x (46)

then one obtains the one-parameter family of solutions x + c1 +
∑5

i=1
ln(u(x)−ri)
[B′(u)]

u=ri

= 0 if

B(u) =
∏5
i=1(u− ri) where r1 < r2 · · · < r5.

In the previous cases of Section 5.2, where the integrating factor µ = µ(V ), one had

deg(B(u)) = deg(A(u))+2. On the other hand, in (46) one has deg(B(u)) = deg(A(u)) + 1.

6. Concluding remarks

In this paper, we introduced a method for finding particular solutions of ODEs. Such

solutions are not obtainable through a direct use of the Maple ODE solver dsolve (which

depends on finding and using integrating factors, Lie point symmetries and contact sym-

metries). Our method, presented in detail in Section 3, uses a combination of invertible

and non-invertible mappings. Many new solutions were found for various nonlinear os-

cillator equations.

In a future paper (Bluman and Dridi, 2011), we will present in more detail the theo-

retical background of the new method presented in this paper.

7. Acknowledgement

We are very thankful to anonymous referees for their constructive comments.

14



References

Bluman, G., Anco, S., 2002. Symmetry and integration methods for differential equations.
Vol. 154 of Applied Mathematical Sciences. Springer-Verlag, New York.

Bluman, G., Dridi, R., 2011. Manuscript in preparation.
Bluman, G. W., Kumei, S., 1989. Symmetries and differential equations. Vol. 81 of Ap-

plied Mathematical Sciences. Springer-Verlag, New York.
Bluman, G. W., Reid, G. J., 1988. New symmetries for ordinary differential equations.

IMA J. Appl. Math. 40 (2), 87–94.
Olver, P. J., 1986. Applications of Lie groups to differential equations. Vol. 107 of Grad-

uate Texts in Mathematics. Springer-Verlag, New York.
Polyanin, A. D., Zaitsev, V. F., 1995. Handbook of exact solutions for ordinary differential

equations. CRC Press, Boca Raton, FL.
Tsuda, T., Okamoto, K., Sakai, H., 2005. Folding transformations of the Painlevé equa-
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